
Security Headers & How to Enable/Insert Security Headers in APV

What are Security headers?

They are directives to increase the protection and create more defense against vulnerabilities using browsers.

How Security Headers Can Prevent Vulnerabilities?

Inserting a security header can prevent a variety of hacking attempts. Security headers can address a number of cyber threats. Also known as
security-related HTTP response headers, they modify the behavior of web browsers to avoid security vulnerabilities.

Security Headers & How to Enable/Insert Security Headers?

1. HTTP Strict Transport Security (HSTS)

Description : HTTP Strict Transport Security (also named HSTS) is a web security policy mechanism which helps to protect websites against
protocol downgrade attacks and cookie hijacking. It allows web servers to declare that web browsers (or other complying user agents) should
only interact with it using secure HTTPS connections, and never via the insecure HTTP protocol. HSTS is an IETF standards track protocol and
is specified in RFC 6797. A server implements an HSTS policy by supplying a header () over an HTTPS Strict-Transport-Security
connection (HSTS headers over HTTP are ignored).

Values

Value Description

max-age=SECONDS The time, in seconds, that the browser should remember that this site
is only to be accessed using HTTPS.

includeSubDomains If this optional parameter is specified, this rule applies to all of the site’
s subdomains as well.

Example

Strict-Transport-Security: max-age=31536000 ; includeSubDomains

CLI commands to insert HSTS header:

http rewrite response insertheader <Virtual_Service> <Header_String>

Example:
http rewrite response insertheader “VS1“ “Strict-Transport-Security: max-age=31536000; includeSubDomains“

Webui steps to insert HSTS header:

Login to Webui SLB Select Virtual service HTTP Settings HTTP Rewrite (Enter the header HTTP Response Header Insertion Strict-
 and save the configuration)Transport-Security: max-age=31536000; includeSubDomains

2. X-Frame-Options

Description : The response header (also named XFO) improves the protection of web applications against clickjacking. It X-Frame-Options
instructs the browser whether the content can be displayed within frames.
The CSP (Content Security Policy) frame-ancestors directive obsoletes the X-Frame-Options header. If a resource has both policies, the CSP
frame-ancestors policy will be enforced and the X-Frame-Options policy will be ignored

Values

Value Description

deny No rendering within a frame.

sameorigin No rendering if origin mismatch.

allow-from: DOMAIN Allows rendering if framed by frame loaded from DOMAIN.

Example

X-Frame-Options: deny

CLI commands to insert X-Frame-Options header:

http rewrite response insertheader <Virtual_Service> <Header_String>

Example:
http rewrite response insertheader “VS1“ “X-Frame-Options: deny“

Webui steps to insert X-Frame-Options header:

Login to Webui SLB Select Virtual service HTTP Settings HTTP Rewrite (Enter the header HTTP Response Header Insertion X-Frame-
and save the configuration)Options: deny

3. X-Content-Type-Options

Description : Setting this header will prevent the browser from interpreting files as a different MIME type to what is specified in the Content-
 HTTP header (e.g. treating as).Type text/plain text/css

Values

Value Description

nosniff Will prevent the browser from MIME-sniffing a response away from
the declared content-type.

Example

X-Content-Type-Options: nosniff

CLI commands to insert X-Content-Type-Options header:

http rewrite response insertheader <Virtual_Service> <Header_String>

Example:
http rewrite response insertheader “VS1“ “X-Content-Type-Options: nosniff“

Webui steps to insert X-Content-Type-Options header:

Login to Webui SLB Select Virtual service HTTP Settings HTTP Rewrite (Enter the header HTTP Response Header Insertion X-Content-
 and save the configuration)Type-Options: nosniff

4. Content-Security-Policy

Description : A Content Security Policy (also named CSP) requires careful tuning and precise definition of the policy. If enabled, CSP has
significant impact on the way browsers render pages (e.g., inline JavaScript is disabled by default and must be explicitly allowed in the policy).
CSP prevents a wide range of attacks, including cross-site scripting and other cross-site injections.

Values

Value Description

base-uri Define the base URI for relative URIs.

default-src Define loading policy for all resources type in case a resource type’s
dedicated directive is not defined (fallback).

script-src Define which scripts the protected resource can execute.

object-src Define from where the protected resource can load plugins.

style-src Define which styles (CSS) can be applied to the protected resource.

img-src Define from where the protected resource can load images.

media-src Define from where the protected resource can load video and audio.

frame-src (Deprecated and replaced by child-src) Define from where the
protected resource can embed frames.

child-src Define from where the protected resource can embed frames.

frame-ancestors Define from where the protected resource can be embedded in
frames.

font-src Define from where the protected resource can load fonts.

connect-src Define which URIs the protected resource can load using script
interfaces.

manifest-src Define from where the protected resource can load manifests.

form-action Define which URIs can be used as the action of HTML form elements.

sandbox Specifies an HTML sandbox policy that the user agent applies to the
protected resource.

script-nonce Define script execution by requiring the presence of the specified
nonce on script elements.

plugin-types Define the set of plugins that can be invoked by the protected
resource by limiting the types of resources that can be embedded.

reflected-xss Instruct the user agent to activate or deactivate any heuristics used to
filter or block reflected cross-site scripting attacks, equivalent to the
effects of the non-standard header.X-XSS-Protection

block-all-mixed-content Prevent the user agent from loading mixed content.

upgrade-insecure-requests Instruct the user agent to download insecure HTTP resources using
HTTPS.

referrer (Deprecated) Define information the user agent can send in the Refer
 header.er

report-uri (Deprecated and replaced by report-to) Specifies a URI to which
the user agent sends reports about policy violation.

report-to Specifies a group (defined in the header) to which the Report-To
user agent sends reports about policy violation.

Example

Content-Security-Policy: script-src 'self'

CLI commands to insert Content-Security-Policy header:

http rewrite response insertheader <Virtual_Service> <Header_String>

Example:
http rewrite response insertheader “VS1“ “Content-Security-Policy: script-src ‘self’“

Webui steps to insert Content-Security-Policy header:

Login to Webui SLB Select Virtual service HTTP Settings HTTP Rewrite (Enter the header HTTP Response Header Insertion Content-
and save the configuration)Security-Policy: script-src ‘self'

5. X-Permitted-Cross-Domain-Policies

Description : A cross-domain policy file is an XML document that grants a web client, such as Adobe Flash Player or Adobe Acrobat (though not
necessarily limited to these), permission to handle data across domains. When clients request content hosted on a particular source domain and
that content makes requests directed towards a domain other than its own, the remote domain needs to host a cross-domain policy file that
grants access to the source domain, allowing the client to continue the transaction. Normally a meta-policy is declared in the master policy file,
but for those who can’t write to the root directory, they can also declare a meta-policy using the X-Permitted-Cross-Domain-Policies
HTTP response header.

Values

Value Description

none No policy files are allowed anywhere on the target server, including
this master policy file.

master-only Only this master policy file is allowed.

by-content-type [HTTP/HTTPS only] Only policy files served with Content-Type: text/x-
cross-domain-policy are allowed.

by-ftp-filename [FTP only] Only policy files whose file names are crossdomain.xml (i.
e. URLs ending in /crossdomain.xml) are allowed.

all All policy files on this target domain are allowed.

Example

X-Permitted-Cross-Domain-Policies: none

CLI commands to insert X-Permitted-Cross-Domain-Policies header:

http rewrite response insertheader <Virtual_Service> <Header_String>

Example:
http rewrite response insertheader “VS1“ “X-Permitted-Cross-Domain-Policies: none“

Webui steps to insert X-Permitted-Cross-Domain-Policies header:

Login to Webui SLB Select Virtual service HTTP Settings HTTP Rewrite (Enter the header HTTP Response Header Insertion X-Permitted-
 and save the configuration)Cross-Domain-Policies: none

6. Referrer-Policy

Description : The HTTP header governs which referrer information, sent in the header, should be included with Referrer-Policy Referer
requests made.

Values

Value Description

no-referrer The header will be omitted entirely. No referrer information Referer
is sent along with requests.

no-referrer-when-downgrade This is the user agent’s default behavior if no policy is specified. The
origin is sent as referrer to a-priori as-much-secure destination
(HTTPS HTTPS), but isn’t sent to a less secure destination (HTTPS
HTTP).

origin Only send the origin of the document as the referrer in all cases. (e.g.
the document will send the https://example.com/page.html
referrer .)https://example.com/

origin-when-cross-origin Send a full URL when performing a same-origin request, but only
send the origin of the document for other cases.

same-origin A referrer will be sent for same-site origins, but cross-origin requests
will contain no referrer information.

strict-origin Only send the origin of the document as the referrer to a-priori as-
much-secure destination (HTTPS HTTPS), but don’t send it to a less
secure destination (HTTPS HTTP).

strict-origin-when-cross-origin Send a full URL when performing a same-origin request, only send
the origin of the document to a-priori as-much-secure destination
(HTTPS HTTPS), and send no header to a less secure destination
(HTTPS HTTP).

unsafe-url Send a full URL (stripped from parameters) when performing a same-
origin or cross-origin request.

Example

Referrer-Policy: no-referrer

CLI commands to insert Referrer-Policy header:

http rewrite response insertheader <Virtual_Service> <Header_String>

Example:
http rewrite response insertheader “VS1“ “Referrer-Policy: no-referrer“

Webui steps to insert Referrer-Policy header:

Login to Webui SLB Select Virtual service HTTP Settings HTTP Rewrite (Enter the header HTTP Response Header Insertion Referrer-
and save the configuration)Policy: no-referrer

7. Clear-Site-Data

Description : The Clear-Site-Data header clears browsing data (cookies, storage, cache) associated with the requesting website. It allows web
developers to have more control over the data stored locally by a browser for their origins. This header is useful for example, during a logout
process, in order to ensure that all stored content on the client side like cookies, storage and cache are removed.

Values

Value Description

"cache" Indicates that the server wishes to remove locally cached data for the
origin of the response URL.

"cookies" Indicates that the server wishes to remove all cookies for the origin of
the response URL. HTTP authentication credentials are also cleared
out. This affects the entire registered domain, including subdomains.

"storage" Indicates that the server wishes to remove all DOM storage for the
origin of the response URL.

"executionContexts" Indicates that the server wishes to reload all browsing contexts for the
origin of the response. Currently, this value is only supported by a
small subset of browsers.

"*" Indicates that the server wishes to clear all types of data for the origin
of the response. If more data types are added in future versions of this
header, they will also be covered by it.

Example

Clear-Site-Data: "cache","cookies","storage"

CLI commands to insert Clear-Site-Data header:

http rewrite response insertheader <Virtual_Service> <Header_String>

Example:
http rewrite response insertheader "VS1" "Clear-Site-Data: %qcache%q,%qcookies%q"

Webui steps to insert Clear-Site-Data header:

Login to Webui SLB Select Virtual service HTTP Settings HTTP Rewrite (Enter the header HTTP Response Header Insertion Clear-Site-
 and save the configuration)Data: %qcache%q,%qcookies%q

8. Cross-Origin-Embedder-Policy

Description : This response header (also named COEP) prevents a document from loading any cross-origin resources that don’t explicitly grant
the document permission.

Values

Value Description

unsafe-none Allows the document to fetch cross-origin resources without giving
explicit permission through the CORS protocol or Cross-Origin-
Resource-Policy header (it is the default value).

require-corp A document can only load resources from the same origin, or
resources explicitly marked as loadable from another origin.

Example

Cross-Origin-Embedder-Policy: require-corp

CLI commands to insert Cross-Origin-Embedder-Policy header:

http rewrite response insertheader <Virtual_Service> <Header_String>

Example:
http rewrite response insertheader "VS1" "Cross-Origin-Embedder-Policy: require-corp"

Webui steps to insert Cross-Origin-Embedder-Policy header:

Login to Webui SLB Select Virtual service HTTP Settings HTTP Rewrite (Enter the header HTTP Response Header Insertion Cross-Origin-
 and save the configuration)Embedder-Policy: require-corp

9. Cross-Origin-Opener-Policy

Description : This response header (also named COOP) allows you to ensure a top-level document does not share a browsing context group
with cross-origin documents. COOP will process-isolate your document and potential attackers can’t access to your global object if they were
opening it in a popup, preventing a set of cross-origin attacks dubbed.

Values

Value Description

unsafe-none Allows the document to be added to its opener’s browsing context
group unless the opener itself has a COOP of or same-origin same

 (it is the default value).-origin-allow-popups

same-origin-allow-popups Retains references to newly opened windows or tabs which either don’
t set COOP or which opt out of isolation by setting a COOP of unsafe

.-none

same-origin Isolates the browsing context exclusively to same-origin documents.
Cross-origin documents are not loaded in the same browsing context.

Example

Cross-Origin-Opener-Policy: same-origin

CLI commands to insert Cross-Origin-Opener-Policy header:

http rewrite response insertheader <Virtual_Service> <Header_String>

Example:
http rewrite response insertheader "VS1" "Cross-Origin-Opener-Policy: same-origin"

Webui steps to insert Cross-Origin-Opener-Policy header:

Login to Webui SLB Select Virtual service HTTP Settings HTTP Rewrite (Enter the header HTTP Response Header Insertion Cross-Origin-
 and save the configuration)Opener-Policy: same-origin

10. Cross-Origin-Resource-Policy

Description : This response header (also named CORP) allows to define a policy that lets web sites and applications opt in to protection against
certain requests from other origins (such as those issued with elements like and), to mitigate speculative side-channel attacks, <script>
like Spectre, as well as Cross-Site Script Inclusion (XSSI) attacks.

Values

Value Description

same-site Only requests from the same Site can read the resource.

same-origin Only requests from the same Origin (i.e. scheme + host + port) can
read the resource.

cross-origin Requests from any Origin (both and) can same-site cross-site
read the resource. Browsers are using this policy when an CORP
header is not specified.

Example

Cross-Origin-Resource-Policy: same-origin

CLI commands to insert Cross-Origin-Resource-Policy header:

http rewrite response insertheader <Virtual_Service> <Header_String>

Example:
http rewrite response insertheader "VS1" "Cross-Origin-Resource-Policy: same-origin"

Webui steps to insert Cross-Origin-Resource-Policy header:

Login to Webui SLB Select Virtual service HTTP Settings HTTP Rewrite (Enter the header HTTP Response Header Insertion Cross-Origin-
 and save the configuration)Resource-Policy: same-origin

11. Cache-Control

Description : This header holds directives (instructions) for caching in both and . If a given directive is in a request, it does requests responses
not mean this directive is in the response. Specify the capability of a resource to be cached is important to prevent exposure of information via
the cache.
The headers named Expires and Pragma can be used in addition to the Cache-Control header. Pragma header can be used for backwards
compatibility with the HTTP/1.0 caches. However, is the recommended way to define the caching policy.Cache-Control

Values applicable for HTTP responses

Value Description

must-revalidate Indicates that once a resource becomes stale, caches do not use their
stale copy without successful validation on the origin server.

no-cache The response may be stored by any cache, even if the response is
normally non-cacheable. However, the stored response MUST always
go through validation with the origin server first before using it.

no-store The response may not be stored in any cache.

no-transform An intermediate cache or proxy cannot edit the response body, Conte
, , or .nt-Encoding Content-Range Content-Type

public The response may be stored by any cache, even if the response is
normally non-cacheable.

private The response may be stored only by a browser’s cache, even if the
response is normally non-cacheable.

proxy-revalidate Like , but only for shared caches (e.g., proxies). must-revalidate
Ignored by private caches.

max-age=<seconds> The maximum amount of time a resource is considered fresh. Unlike
Expires, this directive is relative to the time of the request.

s-maxage=<seconds> Overrides or the Expires header, but only for shared caches max-age
(e.g., proxies). Ignored by private caches.

Example

No caching allowed, clear any previously cached resources and include support for HTTP/1.0 caches:

Cache-Control: no-store, max-age=0

Caching allowed with a cache duration of one week:

Cache-Control: public, max-age=604800

CLI commands to insert Cache-Control header:

http rewrite response insertheader <Virtual_Service> <Header_String>

Example:
http rewrite response insertheader "VS1" "Cache-Control: public, max-age=604800"

Webui steps to insert Cache-Control header:

Login to Webui SLB Select Virtual service HTTP Settings HTTP Rewrite (Enter the header HTTP Response Header Insertion Cache-
 and save the configuration)Control: public, max-age=604800

12. X-XSS-Protection

Description : he X-XSS-Protection header has been deprecated by modern browsers and its use can introduce additional security issues on the
client side. As such, it is recommended to set the header as in order to disable the XSS Auditor, and not allow it to take X-XSS-Protection: 0
the default behavior of the browser handling the response.
This header enables the cross-site scripting (XSS) filter in your browser.

Values

Value Description

0 Filter disabled.

1 Filter enabled. If a cross-site scripting attack is detected, in order to
stop the attack, the browser will sanitize the page.

1; mode=block Filter enabled. Rather than sanitize the page, when a XSS attack is
detected, the browser will prevent rendering of the page.

1; report=http://[YOURDOMAIN]/your_report_URI Filter enabled. The browser will sanitize the page and report the
violation. This is a Chromium function utilizing CSP violation reports to
send details to a URI of your choice.

Example

X-XSS-Protection: 0

CLI commands to insert X-XSS-Protection header:

http rewrite response insertheader <Virtual_Service> <Header_String>

Example:
http rewrite response insertheader "VS1" "X-XSS-Protection: 0"

Webui steps to insert X-XSS-Protection header:

Login to Webui SLB Select Virtual service HTTP Settings HTTP Rewrite (Enter the header HTTP Response Header Insertion X-XSS-
 and save the configuration)Protection: 0

NOTE:
1. “Header_Strings”CLI command and Webui steps to add/insert header is same for any of the header mentioned above. Only differs.
2. %nIf we want to add/insert multiple header then, we need to use sign to separate headers as shown in below example.

Example:
Adding 3 headers together (Strict-Transport-Security , X-Frame-Options , X-XSS-Protection)

CLI command to insert multiple headers:

http rewrite response insertheader "VS1" "X-XSS-Protection: 0 X-Frame-Options: deny Strict-Transport-Security: max-age=31536000"%n %n

Webui steps to insert X-XSS-Protection header:

Login to Webui SLB Select Virtual service HTTP Settings HTTP Rewrite (Enter the headerHTTP Response Header Insertion X-XSS-
 and save the configuration)Protection: 0%nX-Frame-Options: deny%nStrict-Transport-Security: max-age=31536000

==END OF DOCUMENT===
=======

	Security Headers & How to Enable/Insert Security Headers in APV

