diff --git a/.ipynb_checkpoints/3. NumPy exercises-checkpoint_resol.ipynb b/.ipynb_checkpoints/3. NumPy exercises-checkpoint_resol.ipynb
new file mode 100644
index 0000000..504cc6d
--- /dev/null
+++ b/.ipynb_checkpoints/3. NumPy exercises-checkpoint_resol.ipynb
@@ -0,0 +1,2156 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "2LIHc46nrc63"
+ },
+ "source": [
+ "\n",
+ "
\n",
+ "\n",
+ "# NumPy exercises\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "_bqfG08Vrc66"
+ },
+ "outputs": [],
+ "source": [
+ "# Import the numpy package under the name np\n",
+ "import numpy as np\n",
+ "\n",
+ "# Print the numpy version and the configuration\n",
+ "print(np.__version__)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "olQsGV29rc68"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "## Array creation"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "MD2YssNZrc68"
+ },
+ "source": [
+ "### Create a numpy array of size 10, filled with zeros."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "id": "bLrIpf_Qrc69",
+ "outputId": "1f2958a8-dc55-4329-c17e-ff8280adae46",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ }
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 3
+ }
+ ],
+ "source": [
+ "# your code goes here\n",
+ "import numpy as np\n",
+ "\n",
+ "np.array([0]*10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "zH_kJyL2rc69",
+ "outputId": "1c286e34-9403-457f-f6ef-2d84c2b10a83",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ }
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 5
+ }
+ ],
+ "source": [
+ "np.array([0] * 10)\n",
+ "#np.zeros(10)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ZXhdQVkcrc6-"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Create a numpy array with values ranging from 10 to 49"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "id": "jMI49cYArc6-",
+ "outputId": "9ad0f26d-6dfb-49a4-9450-7e1ca7579766",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ }
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,\n",
+ " 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,\n",
+ " 44, 45, 46, 47, 48, 49])"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 7
+ }
+ ],
+ "source": [
+ "# your code goes here\n",
+ "np.arange(10,50)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "9ZQ59HbUrc6_"
+ },
+ "outputs": [],
+ "source": [
+ "np.arange(10,50)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "A59gy-eBrc6_"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Create a numpy matrix of 2*2 integers, filled with ones."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "id": "lWfi8jzmrc7A",
+ "outputId": "40d1fc78-a4f9-46a2-e087-9a9217051746",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ }
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[1, 1],\n",
+ " [1, 1]])"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 14
+ }
+ ],
+ "source": [
+ "# your code goes here\n",
+ "np.ones([2,2], dtype=int)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "plRzG7jDrc7A",
+ "outputId": "b81c592d-a0c1-41c6-aeed-d2b85f8fe540",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ }
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.\n",
+ "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+ " \"\"\"Entry point for launching an IPython kernel.\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[1, 1],\n",
+ " [1, 1]])"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 12
+ }
+ ],
+ "source": [
+ "np.ones([2,2], dtype=np.int)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "fZ1waGNGrc7B"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Create a numpy matrix of 3*2 float numbers, filled with ones."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "id": "M4-NatP7rc7B",
+ "outputId": "0e8f65cc-eea0-498f-c51f-4c727f586056",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ }
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[1., 1.],\n",
+ " [1., 1.],\n",
+ " [1., 1.]])"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 15
+ }
+ ],
+ "source": [
+ "# your code goes here\n",
+ "np.ones([3,2],dtype=float)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "X4W5jVEMrc7B",
+ "outputId": "ea4ad2c7-c102-45f6-dfbb-b3cb83f35c6e",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ }
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+ "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+ " \"\"\"Entry point for launching an IPython kernel.\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[1., 1.],\n",
+ " [1., 1.],\n",
+ " [1., 1.]])"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 16
+ }
+ ],
+ "source": [
+ "np.ones([3,2], dtype=np.float)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "5HKQw8cqrc7B"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy array, create a new numpy array with the same shape and type as X, filled with ones."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "m5poCDu4rc7C"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "NflB968Arc7D"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.arange(4, dtype=np.int)\n",
+ "\n",
+ "np.ones_like(X)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Dgx2V3Ydrc7D"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy matrix, create a new numpy matrix with the same shape and type as X, filled with zeros."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "CAoPuAv_rc7D"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "LwIBYck9rc7D"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([[1,2,3], [4,5,6]], dtype=np.int)\n",
+ "\n",
+ "np.zeros_like(X)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "RHwP-_d1rc7E"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Create a numpy matrix of 4*4 integers, filled with fives."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "Fh6lN5R4rc7E"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "FtlBtvNqrc7E"
+ },
+ "outputs": [],
+ "source": [
+ "np.ones([4,4], dtype=np.int) * 5"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "SjnCFicFrc7E"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy matrix, create a new numpy matrix with the same shape and type as X, filled with sevens."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "K6qF-zw-rc7F"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "D82OCqzCrc7F"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([[2,3], [6,2]], dtype=np.int)\n",
+ "\n",
+ "np.ones_like(X) * 7"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "rWzjwkZwrc7F"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Create a 3*3 identity numpy matrix with ones on the diagonal and zeros elsewhere."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "TkYVc3k7rc7F"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "_n0sYKlFrc7F"
+ },
+ "outputs": [],
+ "source": [
+ "#np.eye(3)\n",
+ "np.identity(3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "shPFREParc7F"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Create a numpy array, filled with 3 random integer values between 1 and 10."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "rzmMvcRPrc7G"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "qi325ovlrc7G"
+ },
+ "outputs": [],
+ "source": [
+ "np.random.randint(10, size=3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ZkRFMxQgrc7G"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Create a 3\\*3\\*3 numpy matrix, filled with random float values."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "YpJH5lzfrc7G"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "xMv9p5Ojrc7G"
+ },
+ "outputs": [],
+ "source": [
+ "#np.random.random((3,3,3)) \n",
+ "np.random.randn(3,3,3) # 0 to 1 floats"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "IP5NrKx7rc7G"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X python list convert it to an Y numpy array"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "_sJI9J5Erc7H"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "NNIgAWGcrc7H"
+ },
+ "outputs": [],
+ "source": [
+ "X = [1, 2, 3]\n",
+ "print(X, type(X))\n",
+ "\n",
+ "Y = np.array(X)\n",
+ "print(Y, type(Y)) # different type"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "u0z-FxEyrc7H"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy array, make a copy and store it on Y."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "vZhFO2CVrc7H"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "ldPfinvfrc7H"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([5,2,3], dtype=np.int)\n",
+ "print(X, id(X))\n",
+ "\n",
+ "Y = np.copy(X)\n",
+ "print(Y, id(Y)) # different id"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ClCRVRB9rc7H"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Create a numpy array with numbers from 1 to 10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "mBJBdsZnrc7I"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "LAeD0ER0rc7I"
+ },
+ "outputs": [],
+ "source": [
+ "np.arange(1, 11)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "yE2T7Pefrc7I"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Create a numpy array with the odd numbers between 1 to 10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "Qfoc_0xIrc7K"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "lBdWGvd-rc7K"
+ },
+ "outputs": [],
+ "source": [
+ "np.arange(1, 11, 2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "p7rBXQSVrc7L"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Create a numpy array with numbers from 1 to 10, in descending order."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "g8ZiU2cnrc7L"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "JinenxzFrc7L"
+ },
+ "outputs": [],
+ "source": [
+ "np.arange(1, 11)[::-1]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "JH7O0oAKrc7M"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Create a 3*3 numpy matrix, filled with values ranging from 0 to 8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "7j6D5C4Frc7M"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "ExY8mXygrc7N"
+ },
+ "outputs": [],
+ "source": [
+ "np.arange(9).reshape(3,3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "S_SjvgnYrc7N"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Show the memory size of the given Z numpy matrix"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "PMfCsNmUrc7N"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "scrolled": true,
+ "id": "90NtEZuCrc7O"
+ },
+ "outputs": [],
+ "source": [
+ "Z = np.zeros((10,10))\n",
+ "\n",
+ "print(\"%d bytes\" % (Z.size * Z.itemsize))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "KpRUjFFurc7O"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "## Array indexation\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "DAxewflnrc7P"
+ },
+ "source": [
+ "### Given the X numpy array, show it's first element"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "qpq585iarc7P"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "Y6Jae_jsrc7P"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array(['A','B','C','D','E'])\n",
+ "\n",
+ "X[0]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "nt8dN0aQrc7P"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy array, show it's last element"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "TGN2TCEUrc7P"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "zeiBrcbKrc7Q"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array(['A','B','C','D','E'])\n",
+ "\n",
+ "#X[len(X)-1]\n",
+ "X[-1]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "AIiTeTedrc7Q"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy array, show it's first three elements"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "bu5lHyblrc7Q"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "NNfOSEDOrc7Q"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array(['A','B','C','D','E'])\n",
+ "\n",
+ "X[0:3] # remember! elements start at zero index"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "dUvutE_zrc7R"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy array, show all middle elements"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "vk66eqqwrc7R"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "f5SqNz3Crc7R"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array(['A','B','C','D','E'])\n",
+ "\n",
+ "X[1:-1]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "hZSmyWt-rc7R"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy array, show the elements in reverse position"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "i1wB3aPArc7S"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "t7kcjTJnrc7S"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array(['A','B','C','D','E'])\n",
+ "\n",
+ "X[::-1]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "xPF_kLcLrc7S"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy array, show the elements in an odd position"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "-W2pGsz8rc7T"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "ml9Sl5exrc7T"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array(['A','B','C','D','E'])\n",
+ "\n",
+ "#X[[0, 2, -1]]\n",
+ "X[::2]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "yGl0dO0vrc7U"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy matrix, show the first row elements"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "VkNuvxh1rc7U"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "uE876trPrc7V"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([\n",
+ " [1, 2, 3, 4],\n",
+ " [5, 6, 7, 8],\n",
+ " [9, 10, 11, 12],\n",
+ " [13, 14, 15, 16]\n",
+ "])\n",
+ "\n",
+ "X[0]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ezE8sletrc7V"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy matrix, show the last row elements"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "6bvVUPDerc7V"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "7tEGFELJrc7W"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([\n",
+ " [1, 2, 3, 4],\n",
+ " [5, 6, 7, 8],\n",
+ " [9, 10, 11, 12],\n",
+ " [13, 14, 15, 16]\n",
+ "])\n",
+ "\n",
+ "X[-1]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "rE5xs6B6rc7W"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy matrix, show the first element on first row"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "kVxUWheIrc7X"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "VHR1sM3frc7X"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([\n",
+ " [1, 2, 3, 4],\n",
+ " [5, 6, 7, 8],\n",
+ " [9, 10, 11, 12],\n",
+ " [13, 14, 15, 16]\n",
+ "])\n",
+ "\n",
+ "#X[0][0]\n",
+ "X[0, 0]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "vUwMXBj5rc7Z"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy matrix, show the last element on last row"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "Ay_ZwQ8prc7Z"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "tS9ld9sDrc7a"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([\n",
+ " [1, 2, 3, 4],\n",
+ " [5, 6, 7, 8],\n",
+ " [9, 10, 11, 12],\n",
+ " [13, 14, 15, 16]\n",
+ "])\n",
+ "\n",
+ "#X[-1][-1]\n",
+ "X[-1, -1]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "gWLJiiIDrc7a"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy matrix, show the middle row elements"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "ZP0Jhgcmrc7a"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "lb2jrkMRrc7a"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([\n",
+ " [1, 2, 3, 4],\n",
+ " [5, 6, 7, 8],\n",
+ " [9, 10, 11, 12],\n",
+ " [13, 14, 15, 16]\n",
+ "])\n",
+ "\n",
+ "#X[1:-1][1:-1] wrong!\n",
+ "X[1:-1, 1:-1]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Cbn7kCwDrc7a"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy matrix, show the first two elements on the first two rows"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "FTzSfYxQrc7b"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "-sWSCdc-rc7b"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([\n",
+ " [1, 2, 3, 4],\n",
+ " [5, 6, 7, 8],\n",
+ " [9, 10, 11, 12],\n",
+ " [13, 14, 15, 16]\n",
+ "])\n",
+ "\n",
+ "#X[:2][:2] wrong!\n",
+ "#X[0:2, 0:2]\n",
+ "X[:2, :2]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ys5NYp8erc7b"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy matrix, show the last two elements on the last two rows"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "iX53EZwurc7b"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "qJ8yC4Utrc7c"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([\n",
+ " [1, 2, 3, 4],\n",
+ " [5, 6, 7, 8],\n",
+ " [9, 10, 11, 12],\n",
+ " [13, 14, 15, 16]\n",
+ "])\n",
+ "\n",
+ "X[2:, 2:]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "bwdc8Hb7rc7c"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "## Array manipulation\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "cazSe8qorc7c"
+ },
+ "source": [
+ "### Convert the given integer numpy array to float"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "9PrXnyJ8rc7c"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "ikUrtCCWrc7d"
+ },
+ "outputs": [],
+ "source": [
+ "X = [-5, -3, 0, 10, 40]\n",
+ "\n",
+ "np.array(X, np.float)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "J-fjRh2erc7d"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Reverse the given numpy array (first element becomes last)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "K3T-Iqkxrc7d"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "pVxb3c-Brc7d"
+ },
+ "outputs": [],
+ "source": [
+ "X = [-5, -3, 0, 10, 40]\n",
+ "\n",
+ "X[::-1]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "cMPuEeEOrc7e"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Order (sort) the given numpy array"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "O9nphYpOrc7e"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "R2_apenlrc7e"
+ },
+ "outputs": [],
+ "source": [
+ "X = [0, 10, -5, 40, -3]\n",
+ "\n",
+ "X.sort()\n",
+ "X"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "jjS6ZALrrc7e"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy array, set the fifth element equal to 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "iWd7IyDerc7e"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "nRAWYAMqrc7f"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.zeros(10)\n",
+ "\n",
+ "X[4] = 1\n",
+ "X"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "HA7eGmzSrc7f"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy array, change the 50 with a 40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "DMnupB8Mrc7f"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "2rqpgTFgrc7f"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([10, 20, 30, 50])\n",
+ "\n",
+ "X[3] = 40\n",
+ "X"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "zKzXzBsQrc7f"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy matrix, change the last row with all 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "HH5w2fryrc7g"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "FLRIom8qrc7g"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([\n",
+ " [1, 2, 3, 4],\n",
+ " [5, 6, 7, 8],\n",
+ " [9, 10, 11, 12],\n",
+ " [13, 14, 15, 16]\n",
+ "])\n",
+ "\n",
+ "X[-1] = np.array([1, 1, 1, 1])\n",
+ "X"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "G1NsEu69rc7g"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy matrix, change the last item on the last row with a 0"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "HBgM-4_4rc7g"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "O5BE5z9Arc7h"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([\n",
+ " [1, 2, 3, 4],\n",
+ " [5, 6, 7, 8],\n",
+ " [9, 10, 11, 12],\n",
+ " [13, 14, 15, 16]\n",
+ "])\n",
+ "\n",
+ "X[-1, -1] = 0\n",
+ "X"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ccsGbjSwrc7h"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy matrix, add 5 to every element"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "mldNTMf9rc7h"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "DAMpEKwwrc7i"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([\n",
+ " [1, 2, 3, 4],\n",
+ " [5, 6, 7, 8],\n",
+ " [9, 10, 11, 12],\n",
+ " [13, 14, 15, 16]\n",
+ "])\n",
+ "\n",
+ "X + 5"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "3N04CKelrc7j"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "## Boolean arrays _(also called masks)_\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "kFD_ly8lrc7j"
+ },
+ "source": [
+ "### Given the X numpy array, make a mask showing negative elements"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "fDIhsnvbrc7j"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "0elD1rftrc7j"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([-1,2,0,-4,5,6,0,0,-9,10])\n",
+ "\n",
+ "mask = X <= 0\n",
+ "mask"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "TknJP2Murc7j"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy array, get the negative elements"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "xbS6MERbrc7k"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "AuHqPFegrc7k"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([-1, 2, 0, -4, 5, 6, 0, 0, -9, 10])\n",
+ "\n",
+ "mask = X <= 0\n",
+ "X[mask]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Wnwb6JUjrc7k"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy array, get numbers higher than 5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "hkYNCf1Drc7k"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "jnNSZfABrc7l"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([-1, 2, 0, -4, 5, 6, 0, 0, -9, 10])\n",
+ "\n",
+ "mask = X > 5\n",
+ "X[mask]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "b8rfb56Irc7q"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy array, get numbers higher than the elements mean"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "g4s42mTcrc7q"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "dtB5DJJVrc7r"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([-1, 2, 0, -4, 5, 6, 0, 0, -9, 10])\n",
+ "\n",
+ "mask = X > X.mean()\n",
+ "X[mask]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "_YC2GlGTrc7r"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy array, get numbers equal to 2 or 10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "KDZZjpLfrc7r"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "scrolled": true,
+ "id": "CB2woA7Crc7r"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([-1, 2, 0, -4, 5, 6, 0, 0, -9, 10])\n",
+ "\n",
+ "mask = (X == 2) | (X == 10)\n",
+ "X[mask]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "uICW0aierc7r"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "## Logic functions\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "EMRJGES4rc7s"
+ },
+ "source": [
+ "### Given the X numpy array, return True if none of its elements is zero"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "28t2nSNOrc7s"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "i7ST0barrc7s"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([-1, 2, 0, -4, 5, 6, 0, 0, -9, 10])\n",
+ "\n",
+ "X.all()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ZllMBs05rc7s"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy array, return True if any of its elements is zero"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "0R6V8CbXrc7s"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "MnSgcU93rc7s"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([-1, 2, 0, -4, 5, 6, 0, 0, -9, 10])\n",
+ "\n",
+ "X.any()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "j8pkKkPWrc7s"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "## Summary statistics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "m6D9TKzVrc7t"
+ },
+ "source": [
+ "### Given the X numpy array, show the sum of its elements"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "DBO_qoJLrc7t"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "6pCCCvuQrc7t"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([3, 5, 6, 7, 2, 3, 4, 9, 4])\n",
+ "\n",
+ "#np.sum(X)\n",
+ "X.sum()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "57H0seHArc7t"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy array, show the mean value of its elements"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "wMaDGblDrc7t"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "d8xhWBDsrc7u"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([1, 2, 0, 4, 5, 6, 0, 0, 9, 10])\n",
+ "\n",
+ "#np.mean(X)\n",
+ "X.mean()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "7yEwKyxorc7u"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy matrix, show the sum of its columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "xJl5kmvFrc7u"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "vKPc7-Eirc7u"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([\n",
+ " [1, 2, 3, 4],\n",
+ " [5, 6, 7, 8],\n",
+ " [9, 10, 11, 12],\n",
+ " [13, 14, 15, 16]\n",
+ "])\n",
+ "\n",
+ "X.sum(axis=0) # remember: axis=0 columns; axis=1 rows"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "UDeyYrcgrc7v"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy matrix, show the mean value of its rows"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "65D32Uv9rc7v"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "ElllkIJRrc7v"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([\n",
+ " [1, 2, 3, 4],\n",
+ " [5, 6, 7, 8],\n",
+ " [9, 10, 11, 12],\n",
+ " [13, 14, 15, 16]\n",
+ "])\n",
+ "\n",
+ "X.mean(axis=1) # remember: axis=0 columns; axis=1 rows"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "4giIPYj9rc7v"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "### Given the X numpy array, show the max value of its elements"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "SQpzeUSUrc7v"
+ },
+ "outputs": [],
+ "source": [
+ "# your code goes here\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "cell_type": "solution",
+ "id": "M5UOzVLerc7v"
+ },
+ "outputs": [],
+ "source": [
+ "X = np.array([1, 2, 0, 4, 5, 6, 0, 0, 9, 10])\n",
+ "\n",
+ "#np.max(X)\n",
+ "X.max()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "P2xy1E4Crc7w"
+ },
+ "source": [
+ ""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.4"
+ },
+ "colab": {
+ "provenance": []
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
\ No newline at end of file