>
computed value ''layout()''.
A layout API container establishes a new layout API formatting context for its
contents. This is the same as establishing a block formatting context, except that the layout
provided by the author is used instead of the block layout.
For example, floats do not intrude into the layout API container, and the layout API container's
margins do not collapse with the margins of its contents.
Layout API containers form a containing block for their contents
exactly like block
containers do. [[!CSS21]]
Note: In a future level of the specification there may be a way to override the containing block
behaviour.
The 'overflow' property applies to layout API containers. This is discussed in
[[#interaction-overflow]].
As the layout is entirely up to the author, properties which are used in other layout modes (e.g.
flex, block) may not apply. For example an author may not repect the 'margin' property on children.
Layout API Container Painting {#painting}
-----------------------------------------
Layout API Container children paint exactly the same as inline blocks [[!CSS21]], except that
the order in which they are returned from the layout method (via
{{FragmentResultOptions/childFragments}}) is used in place of raw document order, and 'z-index'
values other than ''z-index/auto'' create a stacking context even if 'position' is ''static''.
Layout API Model and Terminology {#layout-api-model-and-terminology}
====================================================================
This section gives an overview of the Layout API given to authors.
The current layout is the layout algorithm for the box we are currently performing
layout for.
The parent layout is the layout algorithm for the box's direct parent, (the layout
algorithm which is requesting the current layout to be performed).
A child layout is the layout algorithm for a {{LayoutChild}} of the current layout.
Layout Children {#layout-children}
----------------------------------
[Exposed=LayoutWorklet]
interface LayoutChild {
readonly attribute StylePropertyMapReadOnly styleMap;
IntrinsicSizesRequest intrinsicSizes();
FragmentRequest layoutNextFragment(ConstraintSpace space, ChildBreakToken breakToken);
};
A {{LayoutChild}} represents either a CSS generated box before layout has occured. (The box
or boxes will all have a computed value of 'display' that is not ''none'').
The {{LayoutChild}} does not contain any layout information itself (like inline or block size) but
can be used to generate {{Fragment}}s which do contain layout information.
An author cannot construct a {{LayoutChild}} with this API, this happens at a separate stage of the
rendering engine (post style resolution).
The {{LayoutChild}} has computed style which can be accessed by {{LayoutChild/styleMap}}. The
{{LayoutChild/styleMap}} will only contain properties which are listed in the child input properties
array.
A {{LayoutChild}} could be generated by:
- An element.
- A root inline box.
- A ::before or ::after pseudo-element.
Note: Other pseudo-elements such as ::first-letter or ::first-line do not generate
a {{LayoutChild}} for layout purposes. They are additional styling information for a text
node.
- An anonymous box. For example an anonymous box may be inserted as a result of:
- A text node which has undergone blockification. (Or more generally a root inline
box which has undergone blockification).
- An element with ''display: table-cell'' which doesn't have a parent with ''display: table''.
Note: As an example the following would be placed into three {{LayoutChild}}ren:
<style>
#box::before { content: 'hello!'; }
</style>
<div id="box">A block level box with text.</div>
<img src="..." />
Note: As an example the following would be placed into a single {{LayoutChild}} as they share a
root inline box:
This is a next node, <span>with some additional styling,
that may</span> break over<br>multiple lines.
Multiple non-atomic inlines are placed within the same {{LayoutChild}} to allow rendering
engines to perform text shaping across element boundaries.
Note: As an example the following should produce one {{Fragment}} but is from
three non-
atomic inlines:
ع<span style="color: blue">ع</span>ع
Note: In a future level of the specification there may be a way to query the computed style
of inline boxes inside a root inline box represented by a {{LayoutChild}}.
An array of {{LayoutChild}}ren is passed into the layout method which represents the children of the
current box which is being laid out.
To perform layout on a box the author can invoke the {{LayoutChild/layoutNextFragment()}} method.
This will produce a {{Fragment}} which contains layout information.
The {{LayoutChild/layoutNextFragment()}} method may be invoked multiple times with different
arguments to query the {{LayoutChild}} for different layout information.
Layout Fragments {#layout-fragments}
------------------------------------
[Exposed=LayoutWorklet]
interface Fragment {
readonly attribute double inlineSize;
readonly attribute double blockSize;
attribute double inlineOffset;
attribute double blockOffset;
readonly attribute any data;
readonly attribute ChildBreakToken? breakToken;
};
A {{Fragment}} represents a CSS fragment of a {{LayoutChild}} after layout has occurred on
that child. This is produced by the {{LayoutChild/layoutNextFragment()}} method.
The {{Fragment}} has {{Fragment/inlineSize}} and {{Fragment/blockSize}} attributes, which are set by
the respective child's layout algorithm. They cannot be changed. If the current layout
requires a different {{Fragment/inlineSize}} or {{Fragment/blockSize}} the author must perform
{{LayoutChild/layoutNextFragment()}} again with different arguments in order to get different
results.
The author inside the current layout can position a resulting {{Fragment}} by setting its
{{Fragment/inlineOffset}} and {{Fragment/blockOffset}} attributes. If not set by the author they
default to zero.
The layout algorithm performs a block-like layout (positioning fragments sequentially in the block
direction), while centering its children in the inline direction.
registerLayout('block-like', class {
*intrinsicSizes(styleMap, children) {
const childrenSizes = yield children.map((child) => {
return child.intrinsicSizes();
});
const maxContentSize = childrenSizes.reduce((max, childSizes) => {
return Math.max(max, childSizes.maxContentContribution);
}, 0);
const minContentSize = childrenSizes.reduce((max, childSizes) => {
return Math.max(max, childSizes.minContentContribution);
}, 0);
return {maxContentSize, minContentSize};
}
*layout(space, children, styleMap, edges) {
const inlineSize = resolveInlineSize(space, styleMap);
const availableInlineSize = inlineSize - edges.all.inline;
const availableBlockSize = resolveBlockSize(constraintSpace, styleMap) - edges.all.block;
const childFragments = [];
const childConstraintSpace = new ConstraintSpace({
inlineSize: availableInlineSize,
blockSize: availableBlockSize,
});
let blockOffset = edges.all.blockStart;
const childFragments = yeild children.map((child) => {
return child.layoutNextFragment(childConstraintSpace);
});
for (let fragment of childFragments) {
// Position the fragment in a block like manner, centering it in the
// inline direction.
fragment.blockOffset = blockOffset;
fragment.inlineOffset = Math.max(
edges.all.inlineStart,
(availableInlineSize - fragment.inlineSize) / 2);
blockOffset += fragment.blockSize;
}
const contentSize = blockOffset + edges.all.blockEnd;
const blockSize = resolveBlockSize(
constraintSpace, styleMap, contentSize);
return {
inlineSize: inlineSize,
blockSize: blockSize,
childFragments: childFragments,
};
}
});
The {{Fragment}}'s {{Fragment/breakToken}} specifies where the {{LayoutChild}} last fragmented. If
the {{Fragment/breakToken}} is null the {{LayoutChild}} wont produce any more {{Fragment}}s for that
token chain. The {{Fragment/breakToken}} can be passed to the {{LayoutChild/layoutNextFragment()}}
function to produce the next {{Fragment}} for a particular child. The {{Fragment/breakToken}} cannot
be changed.
If the current layout requires a different {{Fragment/breakToken}} the author must perform
{{LayoutChild/layoutNextFragment()}} again with different arguments.
Note: In a future level of the specification there may be a way to query for additional baseline
information, for example where the alphabetic or center baseline is positioned.
Constraint Spaces {#constraint-spaces}
--------------------------------------
[Constructor(optional ConstraintSpaceOptions options),Exposed=LayoutWorklet]
interface ConstraintSpace {
readonly attribute double inlineSize;
readonly attribute double blockSize;
readonly attribute boolean inlineSizeFixed;
readonly attribute boolean blockSizeFixed;
readonly attribute double percentageInlineSize;
readonly attribute double percentageBlockSize;
readonly attribute BlockFragmentationType blockFragmentationType;
readonly attribute any data;
};
dictionary ConstraintSpaceOptions {
double inlineSize = Infinity;
double blockSize = Infinity;
boolean inlineSizeFixed = false;
boolean blockSizeFixed = false;
double? percentageInlineSize = null;
double? percentageBlockSize = null;
BlockFragmentationType blockFragmentationType = "none";
any data = null;
};
enum BlockFragmentationType { "none", "page", "column", "region" };
A {{ConstraintSpace}} is passed into the layout method which represents the available space for the
current layout to perform layout inside. It is also used to pass information about the
available space into a child layout.
The {{ConstraintSpace}} has {{ConstraintSpace/inlineSize}} and {{ConstraintSpace/blockSize}}
attributes. This represents the available space for a {{Fragment}} which the layout should
respect.
Note: Some layouts may need to produce a {{Fragment}} which exceed this size. For example a
replaced element. The parent layout should expect this to occur and deal with it
appropriately.
A parent layout may require the current layout to be exactly a particular size. If
the {{ConstraintSpace/inlineSizeFixed}} or {{ConstraintSpace/blockSizeFixed}} are true the
current layout should produce a {{Fragment}} with a fixed size in the appropriate direction.
The layout algorithm performs a flexbox-like distribution of spare space in the inline direction. It
creates child constraint spaces which specify that a child should be a fixed inline size.
registerLayout('flex-distribution-like', class {
*intrinsicSizes(styleMap, children) {
const childrenSizes = yield children.map((child) => {
return child.intrinsicSizes();
});
const maxContentSize = childrenSizes.reduce((sum, childSizes) => {
return sum + childSizes.maxContentContribution;
}, 0);
const minContentSize = childrenSizes.reduce((max, childSizes) => {
return sum + childSizes.minContentContribution;
}, 0);
return {maxContentSize, minContentSize};
}
*layout(space, children, styleMap, edges, breakToken) {
const inlineSize = resolveInlineSize(space, styleMap);
const availableInlineSize = inlineSize - edges.all.inline;
const availableBlockSize =
resolveBlockSize(space, styleMap) - edges.all.block;
const childConstraintSpace = new ConstraintSpace({
inlineSize: availableInlineSize,
blockSize: availableBlockSize,
});
const unconstrainedChildFragments = yield children.map((child) => {
return child.layoutNextFragment(childConstraintSpace);
});
const unconstrainedSizes = [];
const totalSize = unconstrainedChildFragments.reduce((sum, fragment, i) => {
unconstrainedSizes[i] = fragment.inlineSize;
return sum + fragment.inlineSize;
}, 0);
// Distribute spare space between children.
const remainingSpace = Math.max(0, inlineSize - totalSize);
const extraSpace = remainingSpace / children.length;
const childFragments = yield children.map((child, i) => {
return child.layoutNextFragment(new ConstraintSpace({
inlineSize: unconstrainedSizes[i] + extraSpace,
inlineSizeFixed: true,
blockSize: availableBlockSize
}));
});
// Position the fragments.
let inlineOffset = 0;
let maxChildBlockSize = 0;
for (let fragment of childFragments) {
fragment.inlineOffset = inlineOffset;
fragment.blockOffset = edges.all.blockStart;
inlineOffset += fragment.inlineSize;
maxChildBlockSize = Math.max(maxChildBlockSize, fragment.blockSize);
}
// Resolve our block size.
const blockSize = resolveBlockSize(space, styleMap, maxChildBlockSize);
return {
inlineSize: inlineSize,
blockSize: blockSize,
childFragments: childFragments,
};
}
});
The {{ConstraintSpace}} has {{ConstraintSpace/percentageInlineSize}} and
{{ConstraintSpace/percentageBlockSize}} attributes. These represent the size that a layout
percentages should be resolved against while performing layout.
The {{ConstraintSpace}} has a {{ConstraintSpace/blockFragmentationType}} attribute. The current
layout should produce a {{Fragment}} which fragments at the {{ConstraintSpace/blockSize}} if
possible.
The current layout may choose not to fragment a {{LayoutChild}} based on the
{{ConstraintSpace/blockFragmentationType}}, for example if the child has a property like
''break-inside: avoid-page;''.
Breaking and Fragmentation {#breaking-and-fragmentation}
--------------------------------------------------------
[Exposed=LayoutWorklet]
interface ChildBreakToken {
readonly attribute BreakType breakType;
readonly attribute LayoutChild child;
};
[Exposed=LayoutWorklet]
interface BreakToken {
readonly attribute sequence<ChildBreakToken> childBreakTokens;
readonly attribute any data;
};
dictionary BreakTokenOptions {
sequence<ChildBreakToken> childBreakTokens;
any data = null;
};
enum BreakType { "none", "inline", "inline-hyphen", "column", "page", "region" };
Issue: Fill out other inline type break types.
A {{LayoutChild}} can produce multiple {{Fragment}}s. A {{LayoutChild}} may fragment in the block
direction if a {{ConstraintSpace/blockFragmentationType}} is not none. Additionally {{LayoutChild}}
which represents inline-level content, may fragment line by line if the displayType is
"normal"
.
A subsequent {{Fragment}} is produced by using the previous {{Fragment}}'s {{Fragment/breakToken}}.
This tells the child layout to produce a {{Fragment}} starting at the point encoded in the
{{ChildBreakToken}}.
Issue: Explain resuming the author defined layout.
This example shows a simple inline layout which places child fragments in the inline direction.
This example also demonstrates using the previous {{Fragment/breakToken}} of a {{Fragment}} to
produce the next fragment for the {{LayoutChild}}.
It also demonstrates using the {{BreakToken}} to respect the {{ConstraintSpace}}'s
{{ConstraintSpace/blockFragmentationType}}, it resumes it layout from the previous {{BreakToken}}.
It returns a {{FragmentResultOptions}} with a {{FragmentResultOptions/breakToken}} which is used to
resume the layout.
registerLayout('basic-inline', class {
static displayType = 'normal';
*layout(space, children, styleMap, edges, breakToken) {
// Resolve our inline size.
const inlineSize = resolveInlineSize(space, styleMap);
// Determine our (inner) available size.
const availableInlineSize = inlineSize - edges.all.inline;
const availableBlockSize =
resolveBlockSize(space, styleMap) - edges.all.block;
const childFragments = [];
let currentLine = [];
let usedInlineSize = 0;
let lineOffset = 0;
let maxLineBlockSize = 0;
// Just a small little function which will update the above variables.
const nextLine = function() {
currentLine = [];
usedInlineSize = 0;
lineOffset += maxLineBlockSize;
maxLineBlockSize = 0;
}
let childBreakToken = null;
if (breakToken) {
childBreakToken = breakToken.childBreakTokens[0];
// Remove all the children we have already produced fragments for.
children.splice(0, children.indexOf(childBreakToken.child));
}
let child = children.shift();
while (child) {
// Make sure we actually have space on the current line.
if (usedInlineSize > availableInlineSize) {
nextLine();
}
// The constraint space here will have the inline size of the
// remaining space on the line.
const remainingInlineSize = availableInlineSize - usedInlineSize;
const constraintSpace = new ConstraintSpace({
inlineSize: availableInlineSize - usedInlineSize,
blockSize: availableBlockSize,
percentageInlineSize: availableInlineSize,
});
const fragment = yield child.layoutNextFragment(constraintSpace,
childBreakToken);
childFragments.push(fragment);
// Check if there is still space on the current line.
if (fragment.inlineSize > remainingInlineSize) {
nextLine();
// Check if we have gone over the block fragmentation limit.
if (constraintSpace.blockFragmentationType != 'none' &&
lineOffset > constraintSpace.blockSize) {
break;
}
}
// Insert fragment on the current line.
currentLine.push(fragment);
fragment.inlineOffset = usedInlineSize;
// Go through each of the fragments on the line and update their
// block offsets.
for (let fragmentOnLine of currentLine) {
fragmentOnLine.blockOffset = lineOffset;
const lineBlockSize =
fragmentOnLine.blockOffset + fragmentOnLine.blockSize;
if (maxLineBlockSize < lineBlockSize) {
maxLineBlockSize = lineBlockSize;
}
}
if (fragment.breakToken) {
childBreakToken = fragment.breakToken;
} else {
// If a fragment doesn't have a break token, we move onto the
// next child.
child = children.shift();
childBreakToken = null;
}
}
// Determine our block size.
nextLine();
const contentSize = lineOffset + edges.all.block;
const blockSize = resolveBlockSize(space,
styleMap,
contentSize);
// Return our fragment.
const result = {
inlineSize: inlineSize,
blockSize: blockSize,
childFragments: childFragments,
}
if (childBreakToken) {
result.breakToken = {
childBreakTokens: [childBreakToken],
};
}
return result;
}
});
Edges {#edges}
--------------
[Exposed=LayoutWorklet]
interface LayoutEdgeSizes {
readonly attribute double inlineStart;
readonly attribute double inlineEnd;
readonly attribute double blockStart;
readonly attribute double blockEnd;
// Convenience attributes for the sum in one direction.
readonly attribute double inline;
readonly attribute double block;
};
[Exposed=LayoutWorklet]
interface LayoutEdges {
readonly attribute LayoutEdgeSizes border;
readonly attribute LayoutEdgeSizes scrollbar;
readonly attribute LayoutEdgeSizes padding;
readonly attribute LayoutEdgeSizes all;
};
A {{LayoutEdges}} object is passed into the layout method. This represents size of the box
model edges for the current box which is being laid out.
The {{LayoutEdges}} has {{LayoutEdges/border}}, {{LayoutEdges/scrollbar}}, and
{{LayoutEdges/padding}} attributes. Each of these represent the width of their respective edge.
The {{LayoutEdges}} has the {{LayoutEdges/all}} attribute. This is a convenience attribute which
represents the sum of the {{LayoutEdges/border}}, {{LayoutEdges/scrollbar}}, {{LayoutEdges/padding}}
edges.
The {{LayoutEdgeSizes}} object represents the width in CSS pixels of an edge in each of the
abstract dimensions ({{LayoutEdgeSizes/inlineStart}}, {{LayoutEdgeSizes/inlineEnd}},
{{LayoutEdgeSizes/blockStart}}, {{LayoutEdgeSizes/blockEnd}}).
The {{LayoutEdgeSizes/inline}}, and {{LayoutEdgeSizes/block}} on the {{LayoutEdgeSizes}} object are
convenience attributes which represent the sum in that direction.
This example shows an node styled by CSS, and what its respective {{LayoutEdges}} could contain.
<style>
.container {
width: 50px;
height: 50px;
}
.box {
display: layout(box-edges);
padding: 10%;
border: solid 2px;
overflow-y: scroll;
}
</style>
<div class="container">
<div class="box"></div>
</div>
registerLayout('box-edges', class {
*layout(space, children, styleMap, edges, breakToken) {
edges.padding.inlineStart; // 5 (as 10% * 50px = 5px).
edges.border.blockEnd; // 2
edges.scrollbar.inlineEnd; // UA-dependent, may be 0 or >0 (e.g. 16).
edges.all.block; // 14 (2 + 5 + 5 + 2).
}
}
Utility Functions {#utility-functions}
--------------------------------------
[Exposed=LayoutWorklet]
partial interface LayoutWorkletGlobalScope {
double resolveInlineSize(ConstraintSpace constraintSpace,
StylePropertyMapReadOnly styleMap);
double resolveBlockSize(ConstraintSpace constraintSpace,
StylePropertyMapReadOnly styleMap,
optional double contentSize);
};
Issue: Specify the behaviour of these functions.
Interactions with other Modules {#interactions-with-other-modules}
==================================================================
This section describes how other CSS modules interact with the CSS Layout API.
Sizing {#interaction-sizing}
----------------------------
Positioning {#interaction-positioning}
--------------------------------------
Overflow {#interaction-overflow}
--------------------------------
Fragmentation {#interaction-fragmentation}
------------------------------------------
Alignment {#interaction-alignment}
----------------------------------
Layout {#layout}
================
This section describes how the CSS Layout API interacts with the user agent's layout engine.
Layout Invalidation {#layout-invalidation}
------------------------------------------
A document has an associated layout name to input properties map and a layout
name to child input properties map. Initially these maps are empty and are populated when
{{registerLayout(name, layoutCtor)}} is called.
Each box has an associated layout valid flag. It may be either
layout-valid or layout-invalid. It is initially set to layout-invalid.
TODO comments. intrinsic sizes valid flag. intrinsic-sizes-valid.
intrinsic-sizes-invalid.
Issue: The above flag is too restrictive on user agents, change.
When the computed style for a |box| changes, the user agent must run the following steps:
1. Let |layoutFunction| be the ''layout()'' function of the 'display' property on the computed
style for the |box| if it exists. If it is a different type of value (e.g. ''grid'') then
abort all these steps.
2. Let |name| be the first argument of the |layoutFunction|.
3. Let |inputProperties| be the result of looking up |name| on layout name to input
properties map.
4. Let |childInputProperties| be the result of looking up |name| on layout name to child
input properties map.
5. For each |property| in |inputProperties|, if the |property|'s computed value has
changed, set the layout valid flag on the box to layout-invalid.
6. For each |property| in |childInputProperties|, if the |property|'s computed value has
changed, set the layout valid flag on the box to layout-invalid.
When a child box represented by a {{LayoutChild}} is added or removed from the box
tree or has its layout invalidated (from a computed style change, or a descentdant change). Set
the layout valid flag on the current box to layout-invalid.
Note: This only describes layout invalidation as it relates to the CSS Layout API. All
boxes conceptually have a layout valid flag and these changes are propagated
through the box tree.
Concepts {#concepts}
--------------------
A layout definition is a struct which describes the information needed by the
{{LayoutWorkletGlobalScope}} about hte author defined layout (which can be referenced by the
''layout()'' function). It consists of:
- class constructor which is the class constructor.
- layout generator function which is the layout generator
function callback.
- intrinsic sizes generator function which is the intrinsic sizes
generator function callback.
- constructor valid flag.
- input properties which is a list of
DOMStrings
- child input properties which is a list of
DOMStrings
.
- child display a {{ChildDisplayType}}.
A document layout definition is a struct which describes the information needed by
the document about the author defined layout (which can be referenced by the ''layout()''
function). It consists of:
- input properties which is a list of
DOMStrings
- child input properties which is a list of
DOMStrings
.
- child display a {{ChildDisplayType}}.
Layout Worklet {#layout-worklet}
--------------------------------
The {{layoutWorklet}} attribute allows access to the {{Worklet}} responsible for all the classes
which are related to layout.
The {{layoutWorklet}}'s worklet global scope type is {{LayoutWorkletGlobalScope}}.
partial interface CSS {
[SameObject] readonly attribute Worklet layoutWorklet;
};
The {{LayoutWorkletGlobalScope}} is the global execution context of the {{layoutWorklet}}.
[Global=(Worklet,LayoutWorklet),Exposed=LayoutWorklet]
interface LayoutWorkletGlobalScope : WorkletGlobalScope {
void registerLayout(DOMString name, VoidFunction layoutCtor);
};
Registering A Layout {#registering-layout}
------------------------------------------
[Exposed=LayoutWorklet]
enum ChildDisplayType {
"block",
"normal",
};
Issue: "normal" is a bad name?
The document has a map of document layout definitions. Initially this map
is empty; it is populated when {{registerLayout(name, layoutCtor)}} is called.
The {{LayoutWorkletGlobalScope}} has a map of layout definitions. Initially this
map is empty; it is populated when {{registerLayout(name, layoutCtor)}} is called.
The {{LayoutWorkletGlobalScope}} has a map of layout class instances. Initially
this map is empty; it is populated when the user agent calls either determine the intrinsic
sizes or generate a fragment for a box.
When the
registerLayout(|name|, |layoutCtor|) method
is called, the user agent
must run the following steps:
1. If the |name| is an empty string,
throw a
TypeError and abort all these steps.
2. Let |layoutDefinitionMap| be {{LayoutWorkletGlobalScope}}'s
layout definitions map.
3. If |layoutDefinitionMap|[|name|]
exists throw a
"
InvalidModificationError"
DOMException and abort all these steps.
4. Let |inputProperties| be an empty
sequence<DOMString>
.
5. Let |inputPropertiesIterable| be the result of
Get(|layoutCtor|, "inputProperties").
6. If |inputPropertiesIterable| is not undefined, then set |inputProperties| to the result of
converting |inputPropertiesIterable| to a
sequence<DOMString>
. If an
exception is
thrown, rethrow the exception and abort all these steps.
Note: The list of CSS properties provided by the input properties getter can either be
custom or native CSS properties.
Note: The list of CSS properties may contain shorthands.
Note: In order for a layout class to be forwards compatible, the list of CSS properties can
also contains currently invalid properties for the user agent. For example
margin-bikeshed-property
.
7. Let |childInputProperties| be an empty
sequence<DOMString>
.
8. Let |childInputPropertiesIterable| be the result of
Get(|layoutCtor|,
"childInputProperties").
9. If |childInputPropertiesIterable| is not undefined, then set |childInputProperties| to the
result of
converting |childInputPropertiesIterable| to a
sequence<DOMString>
. If an exception is
thrown, rethrow the exception
and abort all these steps.
10. Let |childDisplay| be a {{ChildDisplayType}} set to
"block"
.
11. Let |childDisplayValue| be the result of
Get(|layoutCtor|, "childDisplay").
12. If |childDisplayValue| if not undefined, then then |childDisplay| to the result of
converting |childDisplayValue| to a {{ChildDisplayType}}. If an exception is
thrown, rethrow the exception and abort all these steps.
13. If the result of
IsConstructor(|layoutCtor|) is false,
throw a
TypeError and abort all these steps.
14. Let |prototype| be the result of
Get(|layoutCtor|, "prototype").
15. If the result of
Type(|prototype|) is not Object,
throw a
TypeError and
abort all these steps.
16. Let |layout| be the result of
Get(|prototype|,
"layout"
).
17. If the result of
IsCallable(|layout|) is false,
throw a
TypeError and
abort all these steps.
18. If |layout|'s
\[[FunctionKind]]
internal slot is not
"generator"
,
throw a
TypeError and abort all these steps.
19. Let |intrinsicSizes| be the result of
Get(|prototype|,
"intrinsicSizes"
).
20. If the result of
IsCallable(|intrinsicSizes|) is false,
throw a
TypeError and abort all these steps.
21. If |intrinsicSizes|'s
\[[FunctionKind]]
internal slot is not
"generator"
,
throw a
TypeError and abort all these steps.
22. Let |definition| be a new
layout definition with:
-
class constructor being |layoutCtor|.
-
layout generator function being |layout|.
-
intrinsic sizes generator function being |intrinsicSizes|.
-
constructor valid flag being
true.
-
input properties being |inputProperties|.
-
child input properties being |childInputProperties|.
-
child display being |childDisplay|.
23.
Set |layoutDefinitionMap|[|name|] to |definition|.
24.
Queue a task to run the following steps:
1. Let |documentLayoutDefinitionMap| be the associated
document's document layout
definitions map.
2. Let |documentDefinition| be a new
document layout definition with:
-
input properties being |inputProperties|.
-
child input properties being
|childInputProperties|.
-
child display being |childDisplay|.
3. If |documentLayoutDefinitionMap|[|name|]
exists, run the following steps:
1. Let |existingDocumentDefinition| be the result of
get
|documentLayoutDefinitionMap|[|name|].
2. If |existingDocumentDefinition| is
"invalid"
, abort all these steps.
3. If |existingDocumentDefinition| and |documentDefinition| are not equivalent, (that is
input properties,
child input properties, and
child display are different), then:
Set |documentLayoutDefinitionMap|[|name|] to
"invalid"
.
Log an error to the debugging console stating that the same class was registered
with different
inputProperties
,
childInputProperties
, or
childDisplay
.
4. Otherwise,
set |documentLayoutDefinitionMap|[|name|] to
|documentDefinition|.
Note: The shape of the class should be:
class MyLayout {
static get inputProperties() { return ['--foo']; }
static get childrenInputProperties() { return ['--bar']; }
static get childDisplay() { return 'normal'; }
*intrinsicSizes(children, styleMap) {
// Intrinsic sizes code goes here.
}
*layout(space, children, styleMap, edges, breakToken) {
// Layout code goes here.
}
}
Layout Engine {#layout-engine}
------------------------------
[Exposed=LayoutWorklet]
interface FragmentRequest {
// Has internal slots:
// [[layoutChild]] - The layout child to generate the fragment for.
// [[constraintSpace]] - The constraint space to perform layout in.
// [[breakToken]] - The break token to resume the layout with.
};
[Exposed=LayoutWorklet]
interface IntrinsicSizesRequest {
// Has internal slots:
// [[layoutChild]] - The layout child to calculate the intrinsic sizes for.
};
The layout method and intrinsic sizes method on the author supplied layout class is a generator
function instead of a regular javascript function. This is for user-agents to be able to support
asynchronous and parallel layout engines.
When an author invokes the {{LayoutChild/layoutNextFragment()}} method on a {{LayoutChild}} the
user-agent doesn't synchronously generate a {{Fragment}} to return to the author's code. Instead it
returns a {{FragmentRequest}}. This is a completely opaque object to the author but contains
internal slots which encapsulates the {{LayoutChild/layoutNextFragment()}} method call.
When a {{FragmentRequest}}(s) are yielded from a layout generator object the user-agent's
layout engine may run the algorithm asynchronously with other work, and/or on a different thread of
execution. When {{Fragment}}(s) have been produced by the engine, the user-agent will "tick" the
generator object with the resulting {{Fragment}}(s).
The same applies for the {{LayoutChild/intrinsicSizes()}} method.
An example layout engine written in javascript is shown below.
class LayoutEngine {
// This function takes the root of the box-tree, a ConstraintSpace, and a
// BreakToken to (if paginating for printing for example) and generates a
// Fragment.
layoutEntry(rootBox, rootPageConstraintSpace, breakToken) {
return layoutFragment({
box: rootBox,
constraintSpace: rootPageConstraintSpace,
breakToken: breakToken,
});
}
// This function takes a FragmentRequest and calls the appropriate layout
// algorithm to generate the a Fragment.
layoutFragment(fragmentRequest) {
const box = fragmentRequest.layoutChild;
const algorithm = selectLayoutAlgorithmForBox(box);
const fragmentRequestGenerator = algorithm.layout(
fragmentRequest.constraintSpace,
box.children,
box.styleMap,
fragmentRequest.breakToken);
let nextFragmentRequest = fragmentRequestGenerator.next();
while (!nextFragmentRequest.done) {
// A user-agent may decide to perform layout to generate the fragments in
// parallel on separate threads. This example performs them synchronously
// in order.
let fragments = nextFragmentRequest.value.map(layoutFragment);
// A user-agent may decide to yield for other work (garbage collection for
// example) before resuming this layout work. This example just performs
// layout synchronously without any ability to yield.
nextFragmentRequest = fragmentRequestGenerator.next(fragments);
}
return nextFragmentRequest.value; // Return the final Fragment.
}
}
Performing Layout {#performing-layout}
--------------------------------------
// This is the final return value from the author defined layout() method.
dictionary FragmentResultOptions {
double inlineSize = 0;
double blockSize = 0;
sequence<Fragment> childFragments = [];
BreakTokenOptions breakToken = null;
};
dictionary IntrinsicSizesResultOptions {
double maxContentSize;
double minContentSize;
};
interface IntrinsicSizes {
readonly attribute double minContentSize;
readonly attribute double maxContentSize;
};
Issue: Need to specify that the {{LayoutChild}} objects should remain the same between layouts so
the author can store information? Not sure.
### Determining Intrinsic Sizes ### {#determining-intrinsic-sizes}
The determine the intrinsic sizes algorithm defines how a user agent is to query the author
defined layout for a box's intrinsic sizes information.
Note: The determine the intrinsic sizes algorithm allows for user agents to cache an arbitary
number of previous invocations to reuse.
When the user agent wants to
determine the intrinsic sizes of a
layout API formatting
context for a given |box|, |childBoxes| it
must run the following steps:
1. Let |layoutFunction| be the ''layout()'' for the
computed value of <
>
for |box|.
2. If the intrinsic sizes valid flag for the |layoutFunction| is
intrinsic-sizes-valid the user agent may use the intrinsic sizes from the
previous invocation. If so it may abort all these steps and use the previous value
for the intrinsic sizes.
3. Set the intrinsic sizes valid flag for the |layoutFunction| to
intrinsic-sizes-valid.
4. Let |name| be the first argument of the |layoutFunction|.
5. Let |documentDefinition| be the result of get a document layout definition.
If get a document layout definition returned failure, or if |documentDefinition| is
"invalid"
, then let |box| fallback to the flow layout and abort all
these steps.
6. Let |workletGlobalScope| be a {{LayoutWorkletGlobalScope}} from the list of worklet's
WorkletGlobalScopes from the layout {{Worklet}}.
The user agent must have, and select from at least two
{{LayoutWorkletGlobalScope}}s in the worklet's WorkletGlobalScopes list,
unless the user agent is under memory constraints.
Note: This is to ensure that authers do not rely on being able to store state on the global
object or non-regeneratable state on the class.
The user agent may also create a WorkletGlobalScope at this time, given the
layout {{Worklet}}.
7. Run invoke a intrinsic sizes callback given |name|, |box|, |childBoxes|, and
|workletGlobalScope| optionally in parallel.
Note: If the user agent runs invoke a intrinsic sizes callback on a thread in
parallel, it should select a layout worklet global scope which can be used on that
thread.
When the user agent wants to
invoke a intrinsic sizes callback given |name|, |box|,
|childBoxes|, and |workletGlobalScope|, it
must run the following steps:
1. Let |definition| be the result of
get a layout definition given |name|, and
|workletGlobalScope|.
If
get a layout definition returned failure, let the |box| fallback to the
flow
layout and abort all these steps.
2. Let |layoutInstance| be the result of
get a layout class instance given |name|, |box|,
|definition|, |workletGlobalScope|.
If
get a layout class instance returned failure, let the |box| fallback to the
flow layout and abort all these steps.
3. Let |inputProperties| be |definition|'s
input properties.
4. Let |childInputProperties| be |definition|'s
child input
properties.
5. Let |styleMap| be a new {{StylePropertyMapReadOnly}} populated with
only the
computed value's for properties listed in |inputProperties| for |box|.
6. Let |children| be a new
list populated with new {{LayoutChild}} objects which
represent |childBoxes|.
The {{LayoutChild/styleMap}} on each {{LayoutChild}} should be a new
{{StylePropertyMapReadOnly}} populated with
only the
computed value's for
properties listed in |childInputProperties|.
7. At this stage the user agent may re-use the
intrinsic sizes from a previous invocation
if |children|, |styleMap| are equivalent to that previous invocation. If so let the
intrinsic sizes the cached intrinsic sizes and abort all these steps.
8. Let |intrinsicSizesGeneratorFunction| be |definition|'s
intrinsic sizes generator
function.
9. Let |intrinsicSizesGenerator| be the result of
Invoke(|intrinsicSizesGeneratorFunction|, |layoutInstance|, «|styleMap|,
|children|»).
If an exception is
thrown the let |box| fallback to the
flow layout and abort
all these steps.
10. Let |intrinsicSizesValue| be the result of
run a generator given
|intrinsicSizesGenerator|, and
"intrinsic-sizes"
.
If
run a generator returned failure, then let |box| fallback to the
flow
layout and abort all these steps.
11. Let |intrinsicSizes| be the result of
converting |intrinsicSizesValue| to a
{{IntrinsicSizesResultOptions}}. If an exception is
thrown, let |box| fallback to the
flow layout and abort all these steps.
12. Set the
intrinsic sizes of |box|:
- Let |intrinsicSizes|'s {{IntrinsicSizesResultOptions/minContentSize}} be the
min-content size of |box|.
- Let |intrinsicSizes|'s {{IntrinsicSizesResultOptions/maxContentSize}} be the
max-content size of |box|.
### Generating Fragments ### {#generating-fragments}
The generate a fragment algorithm defines how a user agent is to generate a box's
fragment for an author defined layout.
Note: The generate a fragment algorithm allows for user agents to cache an arbitary number of
previous invocations to reuse.
When the user agent wants to
generate a fragment of a
layout API formatting
context for a given |box|, |childBoxes|, |internalConstraintSpace|, and an optional
|internalBreakToken| it
must run the following steps:
1. Let |layoutFunction| be the ''layout()'' for the
computed value of <
>
for |box|.
2. If the layout valid flag for the |layoutFunction| is layout-valid the user
agent may use the intrinsic sizes from the previous invocation. If so it
may abort all these steps and use the previous value for the intrinsic sizes.
3. Set the layout valid flag for the |layoutFunction| to layout-valid.
4. Let |name| be the first argument of the |layoutFunction|.
5. Let |documentDefinition| be the result of get a document layout definition.
If get a document layout definition returned failure, or if |documentDefinition| is
"invalid"
, then let |box| fallback to the flow layout and abort all
these steps.
6. Let |workletGlobalScope| be a {{LayoutWorkletGlobalScope}} from the list of worklet's
WorkletGlobalScopes from the layout {{Worklet}}.
The user agent must have, and select from at least two
{{LayoutWorkletGlobalScope}}s in the worklet's WorkletGlobalScopes list,
unless the user agent is under memory constraints.
Note: This is to ensure that authers do not rely on being able to store state on the global
object or non-regeneratable state on the class.
The user agent may also create a WorkletGlobalScope at this time, given the
layout {{Worklet}}.
7. Run invoke a layout callback given |name|, |box|, |childBoxes|,
|internalConstraintSpace|, |internalBreakToken|, and |workletGlobalScope| optionally in
parallel.
Note: If the user agent runs invoke a intrinsic sizes callback on a thread in
parallel, it should select a layout worklet global scope which can be used on that
thread.
When the user agent wants to
invoke a layout callback given |name|, |box|, |childBoxes|,
|internalConstraintSpace|, |internalBreakToken|, and |workletGlobalScope|, it
must run the
following steps:
1. Let |definition| be the result of
get a layout definition given |name|, and
|workletGlobalScope|.
If
get a layout definition returned failure, let the |box| fallback to the
flow
layout and abort all these steps.
2. Let |layoutInstance| be the result of
get a layout class instance given |name|, |box|,
|definition|, |workletGlobalScope|.
If
get a layout class instance returned failure, let the |box| fallback to the
flow layout and abort all these steps.
3. Let |inputProperties| be |definition|'s
input properties.
4. Let |childInputProperties| be |definition|'s
child input
properties.
5. Let |styleMap| be a new {{StylePropertyMapReadOnly}} populated with
only the
computed value's for properties listed in |inputProperties| for |box|.
6. Let |children| be a new
list populated with new {{LayoutChild}} objects which
represent |childBoxes|.
The {{LayoutChild/styleMap}} on each {{LayoutChild}} should be a new
{{StylePropertyMapReadOnly}} populated with
only the
computed value's for
properties listed in |childInputProperties|.
7. Let |constraintSpace| be a new {{ConstraintSpace}} populated with the appropriate information
from |internalConstraintSpace|.
8. Let |edges| be a new {{LayoutEdgeSizes}} populated with the
computed value for all the
box model edges for |box|.
9. Let |breakToken| be a new {{BreakToken}} populated with the appropriate information from
|internalBreakToken|.
If |internalBreakToken| is null, let |breakToken| be null.
10. At this stage the user agent may re-use a
fragment from a previous invocation if
|children|, |styleMap|, |constraintSpace|, |breakToken| are equivalent to that previous
invocation. If so let the fragment output be that cached fragment and abort all these steps.
11. Let |layoutGeneratorFunction| be |definition|'s
layout generator function.
12. Let |layoutGenerator| be the result of
Invoke(|layoutGeneratorFunction|,
|layoutInstance|, «|styleMap|, |children|, |constraintSpace|, |edges|, |breakToken|»).
If an exception is
thrown the let |box| fallback to the
flow layout and abort
all these steps.
13. Let |fragmentValue| be the result of
run a generator given |layoutGenerator|, and
"layout"
.
If
run a generator returned failure, then let |box| fallback to the
flow
layout and abort all these steps.
14. Let |fragment| be the result of
converting |fragmentValue| to a
{{FragmentResultOptions}}. If an exception is
thrown, let |box| fallback to the
flow layout and abort all these steps.
15. Create a
fragment for |box| with:
- The
inline size set to |fragment|'s {{FragmentResultOptions/inlineSize}}.
- The
block size set to |fragment|'s {{FragmentResultOptions/blockSize}}.
- The child fragments set to |fragment|'s {{FragmentResultOptions/childFragments}}
list. The ordering
is important as this dictates their paint order
(described in [[#layout-api-containers]]). Their position relative to the
border
box of the |fragment| should be based off the author specified
{{Fragment/inlineOffset}} and {{Fragment/blockOffset}}.
- The
fragmentation break information set to |fragment|'s
{{FragmentResultOptions/breakToken}}.
TODO: storage of the break token.
### Utility Algorithms ### {#utility-algorithms}
The section specifies algorithms common to the determine the intrinsic sizes and generate
a fragment algorithms.
When the user agent wants to
get a document layout definition given |name|, it
must run the following steps:
1. Let |documentLayoutDefinitionMap| be the associated
document's document layout
definitions map.
2. If |documentLayoutDefinitionMap|[|name|] does not
exist, return failure and
abort all these steps.
3. Return the result of
get |documentLayoutDefinitionMap|[|name|].
When the user agent wants to
get a layout definition given |name|, and
|workletGlobalScope|, it
must run the following steps:
1. Let |layoutDefinitionMap| be |workletGlobalScope|'s
layout definitions map.
2. If |layoutDefinitionMap|[|name|] does not
exist, run the following steps:
1.
Queue a task to run the following steps:
1. Let |documentLayoutDefinitionMap| be the associated
document's
document
layout definition map.
2.
Set |documentLayoutDefinitionMap|[|name|] to
"invalid"
.
3. The user agent
should log an error to the debugging console stating that a
class wasn't registered in all {{LayoutWorkletGlobalScope}}s.
2. Return failure, and abort all these steps.
3. Return the result of
get |layoutDefinitionMap|[|name|].
When the user agent wants to
get a layout class instance given |name|, |box|,
|definition|, and |workletGlobalScope|, it
must run the following steps:
1. Let |layoutClassInstanceMap| be |workletGlobalScope|'s
layout class instances map.
2. Let |key| be a stable
key which is unique to |box| and |name|.
3. Let |layoutInstance| be the result of
get |layoutClassInstanceMap|[|key|]. If
|layoutInstance| is null, run the following steps:
1. If the
constructor valid flag on |definition| is false, let |box| fallback to the
flow layout and a abort all these steps.
2. Let |layoutCtor| be the
class constructor on |definition|.
3. Let |layoutInstance| be the result of
Construct(|layoutCtor|).
If
construct throws an exception, set the |definition|'s
constructor valid
flag to false, then return failure and abort all these steps.
4.
Set |layoutClassInstanceMap|[|key|] to |layoutInstance|.
4. Return |layoutInstance|.
When the user agent wants to
run a generator given |generator|, and |generatorType|, it
must run the following steps:
1. Let |nextResult| be the result of calling
Invoke(
next
, |generator|).
If an exception is
thrown return failure, and abort all these steps.
2. Perform the following substeps until the result of
Get(|nextResult|,
"done"
) is
true
.
1. Let |requests| be the result of
Get(|nextResult|,
"value"
).
2. Let |results| be an
empty list.
3.
For each |request| in |requests| perform the following substeps:
1. Let |result| be null.
2. If |request| is a {{IntrinsicSizesRequest}} then:
1. Let |layoutChild| be the result of looking up the internal slot
\[[layoutChild]]
on |request|.
2. Let |result| be a new {{IntrinsicSizes}} with:
- {{IntrinsicSizes/minContentSize}} being |layoutChild|'s
min-content
size.
- {{IntrinsicSizes/maxContentSize}} being |layoutChild|'s
max-content
size.
3. If |request| is a {{FragmentRequest}} and |generatorType| is
"layout"
then:
1. Let |layoutChild| be result of looking up the internal slot
\[[layoutChild]]
on |request|.
2. Let |childConstraintSpace| be the result of looking up the internal slot
\[[childConstraintSpace]]
on |request|.
3. Let |childBreakToken| be the result of looking up the internal slot
\[[childBreakToken]]
on |request|.
4. Let |internalFragment| be the result of the user agent producing a
fragment based on |layoutChild|, |childConstraintSpace|, and
|childBreakToken|.
5. Let |result| be a new {{Fragment}} with:
- {{Fragment/inlineSize}} being |internalFragment|'s
inline size.
- {{Fragment/blockSize}} being |internalFragment|'s
block size.
- {{Fragment/inlineOffset}} initially set to 0.
- {{Fragment/blockOffset}} initially set to 0.
- {{Fragment/breakToken}} being a new {{ChildBreakToken}} representing
|layoutChild|'s internal break token.
4. If |result| is null (that is neither of the above branches was taken), return
failure, and abort all these steps.
5.
Append |result| to |results|.
The user agent may perform the above loop out of order, and
in parallel. The ordering
for |requests| and |results| however
must be consistent.
Note: This is to allow user agents to run the appropriate layout algorithm on a different
thread, or asynchronously (e.g. time slicing layout work with other work). If the user
agent performs the loop in parallel, the outside loop has to wait until all the cross
thread tasks are complete before calling the generator again. It cannot return partial
results to the author.
4. Let |nextResult| be the result of calling
Invoke(
next
,
|generator|, |results|).
If an exception is
thrown then return failure, and abort all these steps.
3. Return the result of calling
Get(|nextResult|,
"value"
).