Skip to content

Commit be28e52

Browse files
committed
[css-transforms-2] Fix order of interpolation/addition sections
This fixes #3245.
1 parent 6b36d41 commit be28e52

File tree

1 file changed

+12
-12
lines changed

1 file changed

+12
-12
lines changed

css-transforms-2/Overview.bs

+12-12
Original file line numberDiff line numberDiff line change
@@ -870,6 +870,11 @@ Some transform functions can be represented by more generic transform functions.
870870
For derived transform functions that have a two-dimensional primitive and a three-dimensional primitive, the context decides about the used primitive. See <a href="#interpolation-of-transform-functions">Interpolation of primitives and derived transform functions</a>.
871871

872872

873+
Interpolation of Matrices {#matrix-interpolation}
874+
=================================================
875+
876+
When interpolating between two matrices, each matrix is decomposed into the corresponding translation, rotation, scale, skew and (for a <a>3D matrix</a>) perspective values. Each corresponding component of the decomposed matrices gets interpolated numerically and recomposed back to a matrix in a final step.
877+
873878
Interpolation of 3D matrices {#interpolation-of-3d-matrices}
874879
----------------------------
875880

@@ -1090,18 +1095,6 @@ for (i = 0; i < 3; i++)
10901095

10911096
return</pre>
10921097

1093-
Interpolation of Matrices {#matrix-interpolation}
1094-
=================================================
1095-
1096-
When interpolating between two matrices, each matrix is decomposed into the corresponding translation, rotation, scale, skew and (for a <a>3D matrix</a>) perspective values. Each corresponding component of the decomposed matrices gets interpolated numerically and recomposed back to a matrix in a final step.
1097-
1098-
Neutral element for addition {#neutral-element}
1099-
----------------------------
1100-
1101-
Some animations require a neutral element for addition. For transform functions this is a scalar or a list of scalars of 0. Examples of neutral elements for transform functions are ''translate(0)'', ''translate3d(0, 0, 0)'', ''translateX(0)'', ''translateY(0)'', ''translateZ(0)'', ''scale(0)'', ''scaleX(0)'', ''scaleY(0)'', ''scaleZ(0)'', ''rotate(0)'', ''rotate3d(v<sub>x</sub>, v<sub>y</sub>, v<sub>z</sub>, 0)'' (where <var ignore>v</var> is a context dependent vector), ''rotateX(0)'', ''rotateY(0)'', ''rotateZ(0)'', ''skew(0, 0)'', ''skewX(0)'', ''skewY(0)'', ''matrix(0, 0, 0, 0, 0, 0)'', ''matrix3d(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)'' and ''perspective(0)''.
1102-
1103-
Note: Animations to or from the neutral element of additions <<matrix()>>, ''matrix3d()'' and ''perspective()'' fall back to discrete animations (See [[#matrix-interpolation]]).
1104-
11051098

11061099
Interpolation of primitives and derived transform functions {#interpolation-of-transform-functions}
11071100
===================================================================================================
@@ -1179,6 +1172,13 @@ Addition and accumulation of transform lists {#combining-transform-lists}
11791172
</div>
11801173
</div>
11811174

1175+
Neutral element for addition {#neutral-element}
1176+
----------------------------
1177+
1178+
Some animations require a neutral element for addition. For transform functions this is a scalar or a list of scalars of 0. Examples of neutral elements for transform functions are ''translate(0)'', ''translate3d(0, 0, 0)'', ''translateX(0)'', ''translateY(0)'', ''translateZ(0)'', ''scale(0)'', ''scaleX(0)'', ''scaleY(0)'', ''scaleZ(0)'', ''rotate(0)'', ''rotate3d(v<sub>x</sub>, v<sub>y</sub>, v<sub>z</sub>, 0)'' (where <var ignore>v</var> is a context dependent vector), ''rotateX(0)'', ''rotateY(0)'', ''rotateZ(0)'', ''skew(0, 0)'', ''skewX(0)'', ''skewY(0)'', ''matrix(0, 0, 0, 0, 0, 0)'', ''matrix3d(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)'' and ''perspective(0)''.
1179+
1180+
Note: Animations to or from the neutral element of additions <<matrix()>>, ''matrix3d()'' and ''perspective()'' fall back to discrete animations (See [[#matrix-interpolation]]).
1181+
11821182

11831183
Mathematical Description of Transform Functions {#mathematical-description}
11841184
===============================================

0 commit comments

Comments
 (0)