You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: css-transforms-2/Overview.bs
+12-12
Original file line number
Diff line number
Diff line change
@@ -870,6 +870,11 @@ Some transform functions can be represented by more generic transform functions.
870
870
For derived transform functions that have a two-dimensional primitive and a three-dimensional primitive, the context decides about the used primitive. See <a href="#interpolation-of-transform-functions">Interpolation of primitives and derived transform functions</a>.
871
871
872
872
873
+
Interpolation of Matrices {#matrix-interpolation}
874
+
=================================================
875
+
876
+
When interpolating between two matrices, each matrix is decomposed into the corresponding translation, rotation, scale, skew and (for a <a>3D matrix</a>) perspective values. Each corresponding component of the decomposed matrices gets interpolated numerically and recomposed back to a matrix in a final step.
877
+
873
878
Interpolation of 3D matrices {#interpolation-of-3d-matrices}
874
879
----------------------------
875
880
@@ -1090,18 +1095,6 @@ for (i = 0; i < 3; i++)
1090
1095
1091
1096
return</pre>
1092
1097
1093
-
Interpolation of Matrices {#matrix-interpolation}
1094
-
=================================================
1095
-
1096
-
When interpolating between two matrices, each matrix is decomposed into the corresponding translation, rotation, scale, skew and (for a <a>3D matrix</a>) perspective values. Each corresponding component of the decomposed matrices gets interpolated numerically and recomposed back to a matrix in a final step.
1097
-
1098
-
Neutral element for addition {#neutral-element}
1099
-
----------------------------
1100
-
1101
-
Some animations require a neutral element for addition. For transform functions this is a scalar or a list of scalars of 0. Examples of neutral elements for transform functions are ''translate(0)'', ''translate3d(0, 0, 0)'', ''translateX(0)'', ''translateY(0)'', ''translateZ(0)'', ''scale(0)'', ''scaleX(0)'', ''scaleY(0)'', ''scaleZ(0)'', ''rotate(0)'', ''rotate3d(v<sub>x</sub>, v<sub>y</sub>, v<sub>z</sub>, 0)'' (where <var ignore>v</var> is a context dependent vector), ''rotateX(0)'', ''rotateY(0)'', ''rotateZ(0)'', ''skew(0, 0)'', ''skewX(0)'', ''skewY(0)'', ''matrix(0, 0, 0, 0, 0, 0)'', ''matrix3d(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)'' and ''perspective(0)''.
1102
-
1103
-
Note: Animations to or from the neutral element of additions <<matrix()>>, ''matrix3d()'' and ''perspective()'' fall back to discrete animations (See [[#matrix-interpolation]]).
1104
-
1105
1098
1106
1099
Interpolation of primitives and derived transform functions {#interpolation-of-transform-functions}
@@ -1179,6 +1172,13 @@ Addition and accumulation of transform lists {#combining-transform-lists}
1179
1172
</div>
1180
1173
</div>
1181
1174
1175
+
Neutral element for addition {#neutral-element}
1176
+
----------------------------
1177
+
1178
+
Some animations require a neutral element for addition. For transform functions this is a scalar or a list of scalars of 0. Examples of neutral elements for transform functions are ''translate(0)'', ''translate3d(0, 0, 0)'', ''translateX(0)'', ''translateY(0)'', ''translateZ(0)'', ''scale(0)'', ''scaleX(0)'', ''scaleY(0)'', ''scaleZ(0)'', ''rotate(0)'', ''rotate3d(v<sub>x</sub>, v<sub>y</sub>, v<sub>z</sub>, 0)'' (where <var ignore>v</var> is a context dependent vector), ''rotateX(0)'', ''rotateY(0)'', ''rotateZ(0)'', ''skew(0, 0)'', ''skewX(0)'', ''skewY(0)'', ''matrix(0, 0, 0, 0, 0, 0)'', ''matrix3d(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)'' and ''perspective(0)''.
1179
+
1180
+
Note: Animations to or from the neutral element of additions <<matrix()>>, ''matrix3d()'' and ''perspective()'' fall back to discrete animations (See [[#matrix-interpolation]]).
1181
+
1182
1182
1183
1183
Mathematical Description of Transform Functions {#mathematical-description}
0 commit comments